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The dynamics of lipid vesicles enclosing a viscous polymer solution is studied in a simple shear flow near a wall. The ratio 
between the internal fluid viscosity and the one of the outer aqueous solution is chosen to be above the tank-treading-to-
tumbling transition for all analyzed vesicles. A clear influence of the presence of the wall on the tumbling motion of vesicles 
has been detected. In the entire range of applied shear rates, pure tumbling has not been observed due to the high density 
difference between the internal fluid and the suspending medium, keeping vesicles close to the wall. The strong 
deformability of their membranes, coupled to the high viscosity ratios, leads to a periodic modulation of the vesicle shape, 
with a periodicity correlated to the shear rate of the hydrodynamic flow and amplitudes depending on the vesicle's deflation. 
This shape modulation is coupled to a rolling motion of the vesicles. 
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1. Introduction 
 
The mechanisms of cell transmigration under flow 

have been an object of active experimental and theoretical 
research during recent years, due to their strong relevance 
to such important processes as the anti-inflammation 
response of the immune system and cancer metastasis 
formation in the organism [1]. The major role of white 
blood cells (WBCs, or leukocytes) is to protect the 
organism from the invasion of foreign bodies and 
infectious diseases. Being the principal participants in the 
innate immune response of the organism, WBCs are 
recruited to attack the infectious agents. After the 
chemoattraction, rolling and tight adhesion steps [2], 
leukocytes transmigrate the endothelial layer of the blood 
vessel (the so-called extravasation), in order to reach and 
eliminate the foreign cell. 

Important progress in the understanding of the 
different steps of cell transmigration through the 
endothelial wall has been achieved recently. A special 
interest has been accorded to the leukocyte margination in 
the blood flow [3-5], favoured by WBC interactions with 
erythrocytes and the cell segregation in the flow. Red 
blood cell aggregation is reported to promote leukocyte 
adhesion to the vessel, by initiating and stabilizing 
attachments following leukocyte margination [6]. 
Evidence for the hydrodynamic recruitment of rolling 
WBCs [7] revealed the collective character of the 

leukocyte accumulation at inflammatory sites. Various 
types of leukocyte exist [8], but nevertheless the cells have 
some common morphological features – they are nearly 
spherical, with diameters of the order of 10 µm. These 
characteristics are common with those of giant lipid 
vesicles, which have been widely used during recent 
decades as a purely physical model of biological cells (see 
for example [9]). 

Here, we present an experimental study of non-
adherent viscous vesicles in a linear hydrodynamic flow 
near a wall. We attempt to model the rolling motion of 
leukocytes on the endothelium before the tight adhesion 
phase during the cell transmigration. In the absence of any 
specific adhesion in our study, vesicles are kept close to 
the bottom wall of the experimental flow chamber, due to 
the gravity and the positive density difference between the 
enclosed polymer solution and the surrounding fluid. So 
far, the dynamics of tank-treading vesicles, enclosing 
simple sugar solutions, has been studied in a wall-bounded 
shear flow [10]. In the following, we will focus on 
tumbling vesicles. 

 
 
2. Materials and methods 
 
All chemicals were purchased from Sigma-Aldrich 

Chem. (France). Giant unilamellar vesicles were 
electroformed [11] from dioleoyl-phosphatidylcholine in 
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aqueous solutions, containing dextran to increase the 
viscosity, and glucose to maintain its osmolarity. 
Electroformation chambers with ITO coated plates were 
used. Immediately after preparation, vesicle suspensions 
were taken from the electroformation chamber, and diluted 
with a slightly hyperosmotic sucrose solution, leading to 
the deflation of the vesicles (due to the non-zero 
membrane permeability towards water). Dextran, with 
high molecular weight ( 5105 ⋅≈ g/mol), was used. Its 
aqueous solutions show Newtonian behaviour over a wide 
range of shear rates. To attain the desired viscosity of 
dextran solutions, it is necessary to use relatively high 
weight concentrations of dextran. This makes the vesicles 
heavy compared to the outer solution, and thus promotes 
their rapid sedimentation during the flow experiment. 
Thus, approaching the bottom of the shear cell, vesicle 
tumbling will be affected by the proximity. The viscosities 
of all polymer solutions were measured with a controlled 
Bohlin Gemini 150 rheometer (Malvern Instruments, 
Germany) with cone-plate geometry (60 mm diameter, 2° 
angle). A capillary viscometer (Schott-Geräte GmbH – 
Mainz, Germany) was used to determine the viscosities of 
the sucrose solutions.  

All experiments were performed at room temperature 
(22–25°C) on an Olympus IX71 inverted microscope, 
inclined at 90° with respect to its usual position, so that the 
direction of gravity was in the focal plane and 
perpendicular to the direction of flow. Two types of flow 
chamber were used: a Poiseuille flow chamber (a 
rectangular box with dimensions: height 1 mm, width 10 
mm, and length 70 mm), in which the flow was created 
using a syringe pump; and a cylindrical Couette chamber 
operating at an imposed shear rate [12]. On the scale of a 
lipid vesicle of diameter 50 µm, the shear rate close to the 
wall in the Poiseuille flow chamber was constant. Vesicles 
were observed in a phase contrast mode, and acquired 
directly. Image processing yielded the relevant 
geometrical parameters. 

 
 
3. Results and discussion 
 
Viscous vesicles, at various shear rates (12 – 120 s-1) 

covering the physiological values at vessel walls, have 

been studied in a linear hydrodynamic field in the 
proximity of the bottom of the experimental flow chamber.  

For every vesicle studied, its volume V and 
membrane surface area S  were determined from the 
vesicle contour at rest (assuming axial symmetry). In this 
way, each vesicle is characterised by a nominal radius 

π40
SR =  and its reduced volume is 

3
04
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V

π
ν = . In our 

experiments, vesicles were deflated with ν  between 0.92 
and 0.99, corresponding to prolate spheroidal shapes under 
equilibrium [13]. When the viscosity ratio outin ηηλ /=  
between the inner and the outer fluid is low enough, a 
deflated vesicle assumes a fixed orientation in an 
unbounded shear flow, and the vesicle’s membrane 
undergoes a tank-treading motion. Above a critical value 
of the viscosity ratio (depending on ν ), a transition to an 
unsteady periodic motion occurs, and vesicles tumble in 
the flow. In our study, λ  was between 10 and 20, which 
is higher than the threshold value for the tank-treading-to-
tumbling transition in the range of all reduced volumes we 
studied [14].  

In their liquid-crystalline state, lipid membranes are 
characterised by a bending (curvature) modulus, ck (~ 10-

19 J), and a stretching modulus, sk (~ 0.1 N/m). Roughly, 
we can imagine the lipid vesicle membrane as a non-
extensible shell with very small resistance to bending. In 
this case, a dimensionless capillary number: 
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characterising the deformability of the vesicle into the 
hydrodynamic field can be defined, where γ&  is the shear 
rate. In our experiments, capillary numbers were in the 
range 63 10.310.3 ÷ . 

The rotation angle is defined as the angle between the 
major inertia axis of the vesicle and the shear flow 
direction.  

 
 

 
 

Fig. 1. Vesicles containing dextran-glucose aqueous solutions in a suspending fluid of 0.42 M sucrose in water, 
subjected to a linear shear flow near a wall: (a) Vesicle 1: lkgsµmR /1048.71;30;3.10;92.0 31

0
−− ⋅=Δ==== ργλν & , 

internal solution: 7% Dextran and 0.38 M glucose; Poiseuille flow chamber;  (b) Vesicle 2: 
lkgsµmR /107.1;50;42;17;99.0 21

0
−− ⋅=Δ==== ργλν &  internal solution: 10% Dextran and 0.38 M glucose;  
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                             Couette chamber; time interval between two consecutive images 0.1 s. 
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Fig. 2. Experimental data for the tumbling and the axis 
oscillation periods; the lines represent exponential decay 
fits of the type 0/

0
γγ&−⋅+= eATT : ves.1 ( 92.0=υ ) – 

dashed line vesicles with high [ ]99.0,96.0∈υ (the 
average period with its standard deviation  is  presented  
for  at   least   three   from  an  
             ensemble of ten vesicles)– solid line.  

 
 

The distance h  between the vesicle and the bottom of 
the experimental cell is taken as half the distance between 
the vesicle’s image and its reflection (see Fig. 1). In the 
range of shear rates studied, h  was measured to be 
constant for a given vesicle (for vesicle 1 of Fig. 1 its 
value was )17( ±=h  µm). We were able to describe 
quantitatively the vesicle motion for different wall shear 
rates at viscosity ratios λ  high enough to guarantee the 
tumbling of the vesicle far away from the wall. 

In proximity to the wall, viscous vesicles roll in the 
flow direction with a translational velocity, depending on 
the shear rate of the flow. Their rolling motion is coupled 
to a shape modulation (measured through the variations of 
the two main axis lengths) with a periodicity correlated to 
γ&  (Fig. 2). 

The tumbling and axis oscillation periods for a given 
vesicle were measured to be equal, within experimental 
error, for each shear rate, both for well deflated and nearly 
spherical vesicles (Fig. 2). The amplitudes of the shape 
fluctuations were higher for more deflated vesicles 
(Fig. 1). At small shear rates, the accumulation of the 
experimental data is accompanied by many technical 
difficulties (limited chamber length, restricting the 
maximum measurable distance of a vesicle’s run, making 
impossible the recording of several periods for a given 
vesicle). When the shear rate increases, the tumbling and 
axis oscillation periods decrease down to a minimal value, 
which was found to be the same for deflated and more 
spherical vesicles (see the caption of Fig. 2). In particular, 
the tumbling period was not proportional to the inverse of 
the shear rate, contrary to the unbounded situation. In our 

case, the presence of a wall induced shape variations while 
the vesicle rolls. However, these deformations are limited 
by the membrane rigidity. Thus, when γ&  increases, the 
relevant time scale is no longer 1−γ&  but 13

0
−

cout kRη , which 
is independent of the shear rate. Coherently, this 
asymptotic value is reached more quickly by deflated 
vesicles, for which the deformation amplitudes are more 
important (Fig. 1). 

While they are rolling, vesicles also move in the flow 
direction. Goldman et al. [15] calculated the translational 
velocity U  of rigid spheres of radius 0R  as a function of 
the applied wall shear rate γ&  in the limit 0Rh <<  
(corresponding to our case, when vesicles are almost 
touching the bottom of the flow chamber): 

 

γ&0
0

0

)/ln(2.0638.0
)/1(743.0 R
Rh

RhU
−

+
=              (2) 

 
We compare our measurements of the translational 

velocity of a deflated vesicle with this theoretical result. 
For the range of shear rates studied, the sphere’s velocity 
calculated using (2) and the value of h  experimentally 
measured is depicted in Fig. 3 (dashed line). 
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Fig. 3. The velocity of vesicle 1 as a function of the shear 
rate; dashed line: the theoretical results for the velocity 
of  rigid spheres in proximity to  the wall [15]   (see text). 

 
Besides the smaller apparent rotational velocity of 

deformable vesicles compared to that of rigid spheres 
( 0TTtumb ≈  at high shear rates), lower translational 
velocities are measured, also for vesicles at high γ&  (in the 
range of the values, measured at the vessel wall). This can 
be related to saturation of the rotational velocity, which 
leads to an increase in the viscous friction between the 
vesicle and the wall. This observation may be relevant to 
the case of rolling WBC, which must slow down in order 
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to be able to adhere tightly, then to transmigrate the vessel 
wall and, afterwards, to reach the inflammatory site. 

In the present study, a periodic rolling motion of 
deformable viscous vesicles in a linear shear flow near a 
wall has been observed and characterised. These 
deformable objects roll more slowly than rigid spheres in 
the flow at high values of shear rates, typical for those 
measured at a vessel wall in the blood flow. Our results 
may be helpful for the elucidation of the purely physical 
aspects of the cell rolling during the transmigration 
process through the blood vessel’s wall. 
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